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Chaotic sound waves in a regular billiard
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We present experimental results for the ultrasound transmission spectra and standing wave patterns of a
rectangular block of fused quartz. A comparison is made between our data and an approximation of the
theoretical staircase function for three-dimensional isotropic elasticity. The main emphasis of our study is on
the role of mode conversion in regular ray-splitting billiards. We present the fluctuation statistics and find that
these are described by the Gaussian orthogonal ensemble of random matrix theory, despite the fact that the
system is not classically chaotic, as demonstrated with numerical simulation. Using temperature perturbation,
we find that the vast majority of the resonances are mixtures of transverse and longitudinal wave motion, yet
a small number of special resonances remain pure. We further illuminate this by presenting standing wave
patterns measured on one face of the block.
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[. INTRODUCTION purely transverse or purely longitudinal incoming wave is
converted into two outgoing waves, one of each type, ac-
Can you calculate the eigenfrequencies of a freely vibratcording to Snell's law 24]. Referencg15] found by numeri-
ing rectangular block of isotropic and homogeneous matecal simulation of ray splitting in classical billiards that chao-
rial? Confronted with this question, many physicists wronglytiCity is enhanced. Experimental studies of ray-splitting
believe that the answer is positive. In fact, not even the exadtilliards have been carried out with modified Sinai micro-
average resonance densitieyl formula is known, much ~Wwave cavities, comparing results for the spectral fluctuations
less the actual eigenfrequencies or the eigenfunctions. Rrand parametric correlators to numerical calculations for the
newed interest and insight in such classic problems of elag@y-splitting version of the annular billiafd 6], and the tri-
todynamics is now arising from the application of methodsangular step billiard17]. In Ref.[18] the spectra and wave
used in the field of quantum chaos. functions of such experiments are given a semiclassical in-
It has been establishdd] that the fluctuation properties terpretation. These studies have all focused on ray-splitting
of Spectra from quantum billiards and from the f|exing of SyStemS that are ClaSSica”y chaotic. Here, we are interested
thin plates are identical. This result was confirmed experiin Systems that are not classically chaotic, even when ray
mentally in Ref.[2], which also presented the theoretical SPitting is present. The rectangular plate is an example of
Weyl formula and found agreement with the experimentaiSuch a system, and in R¢b] it was established experimen-
result. Cavity scattering in elastodynamics has been investfally that mode conversion gives rise to chaotic spectral fluc-
gated[3]' and an important breakthrough occurred very re_tuations for this system. Itis pTECiSEIy this issue we now seek
cently when periodic orbits were used for the first time toto clarify for the rectangular block.
calculate the level density for the elastic dfgd. The rect- We first present a comparison of the measured staircase
angular plate was investigated experimentfiyand an at- function to an approximation including the two leading
tempt to calculate the level density for this system, usingerms, first calculated by Dupuis, Mazo, and Onsgdéx,
periodic orbits, is under waj]. then later by Safarov and Vassili€20]. We then present the
The conjecture of Ref7] states that spectral fluctuations fluctuation statistics of the resonances, in terms of the nearest
of quantum chaotic systems obey random matrix theoryreighbor spacing distribution and thg(L), and compare to
(RMT), and Ref[8] states that also the motion of the energyfandom matrix results. To investigate the character of the
levels of quantum chaotic systems, under a perturbation dgesonances, we measure the distribution of normalized fre-
an external parameter, obeys RMT. Experimental results witguency shifts due to a temperature perturbation. This result
acoustic system@—13] strongly suggest the applicability of can be directly compared to the corresponding result for the
these two conjectures to a wider range of systems than quafectangular plat¢5], but also serves as a guide for selection
tum chaotic systemi4]. In that capacity, these experiments Of resonances for which we measure the standing wave pat-
have served not just as analog systems of quantum billiardéerns by scanning one face of the block. One of the interest-
but more generally, to promote problems of elastodynamicé'd aspects of our results is that we find both mixed states
as interesting problems in their own right. and states that are “bouncing-ball’-liKe1].
In this paper, we consider the free, resonant vibrations of
a rectangular_block of f_used quartz. We are thug studying the Il. EXPERIMENTAL SETUP
three-dimensional version of the in-plane vibration modes of
the rectangular plate, treated in RE5]. For both of these We measure ultrasound transmission spectra of a rectan-
systems, mode conversion is important: On the boundary, gular block using piezoelectric transducers, see Fig. 1. There

1063-651X/2003/6(2)/0262137)/$20.00 67 026213-1 ©2003 The American Physical Society



SCHAADT, TUFAILE, AND ELLEGAARD PHYSICAL REVIEW E 67, 026213 (2003

of ' ' ' ' ' ] aries in all three spatial dimensions. Heves the volume of

1 the system an&is the surface area. Refererf@3] gives the
valuesc,= 3750 m/s,c,=5894 m/s, and Poisson’s ratio
=0.16 for fused quartz. The ratio

)
o Vi—2v 2

depends only orv and equals 1.57 with the values given
above.
of ' ' ' ' ' ] The resonances are, in general, mixtures of longitudinal

1 and transverse waves that propagate independently inside the
block but couple upon reflection at a boundary, where mode
conversion takes place, see, e.g., R2#] for details.
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IV. ULTRASOUND TRANSMISSION SPECTRUM

Amplitude [dBm]

—100f . ‘ . . . ] An HP 3589A spectrum-network analyzer is used to mea-
780.33 780.46 780.60 780.73 780.86 781.00 781.13 sure the ultrasound transmission spectrum in the frequency
Frequency [kHz] range between 0 kHz and 885 kHz. The entire spectrum was
FIG. 1. Measured spectra at two different temperatures of th easured three “m?s Wit.h different locations of the block on
rectangular fused quartz block, 35 18 and 40 °C(b). he transducers. U_smg this method, resonance pea_ks that are
hardly detectable in one spectrum are easily seen in the two

are three such transducers, of which one is a transmitter anc&her spectra. These measurements were carried out at a tem-

two are receivers. The temperature of the system is kel{Rerature of 35°C. A section of the spectrum, from 600 kHz

constant to within 0.005°C using a temperature controller%? 88(‘;’#HZ’ \t/vas t.rt].en reTiﬁsubrled I?t a tt(;z]mp:eratlére of 40°C.
such that the eigenfrequencies are not affected by fluctug-"Vo dilferent positions of the biock on the transducers was

tions in room temperature. The pressure of the air surrounol!S(ad to avoid missing levels, as explained above. Generally,

ing the block can be controlled and kept at a low value wherd!© particular positions are selec_ted, exgept that they must be
air damping of the block vibration is insignificant. During different and we also try to avoid positions that are directly
measurements, the block is resting only on three tiny spikege.lat?d to thetsymmetnle?to;the E_Iockl. 'fA Setﬁt'o? of ??f tranf—
making the vibrations as close to free as possible. For a mm%1ISSIOn spectrum 1S plotted in Fg. 1 for the two ditteren

detailed description of our setup, see ReR)|. value; of the temperature. .
The rectangular block is made of fused quartz and has Notice that the temperature increase makes the resonance

side lengths 14 mm, 25 mm, and 40 mm. The acoustic peaks shift upward in frequency. This comes about because

value is between foand 16 at a typical frequency of 500 the thermal expansion is negligible for fused qt@rtz com-
kHz. Previous experimenfsdl1,12 on single-crystal quartz Earedgto thded:/dT anddc,/dT, that are both positive, see

blocks reported values of around 10and utilized this high qZ'"( 2easr<]3n(ar:;:e peaks are fitted with a so-called skew
quality for measuring many eigenfrequencies. Lorentzian[25] using interactive software developed in the

programming languag®L. The fit parameters include the

In the bulk of our fused quartz block, transverse and lon-
gitudinal waves propagate independently with dispersion re- V. STAIRCASE FUNCTION
lationsk=2f/c, andk=27f/c,, wherek is the wave num-
ber, f is the frequency, and, andc, are the transverse and
longitudinal wave speeds, respectively. An approximation t
the Weyl law, i.e., the number of resonances,

We find 2338 resonances in the frequency range from 0
Hz to 885 kHz. This number must be compared to the Weyl
aw, given in Eq.(1), which gives 2333. In Fig. 2 we show
the measured staircase function along with the Weyl law Eq.
(1). The agreement is striking, considering that Eq.is an
approximation that includes only the two leading terms.
Looking at the difference between the measured staircase
(1)  and the approximate Weyl curysee inset to Fig.)2 which
we call the fluctuations, it is clear that some systematic effect
below frequencyf, was calculated by Dupuis, Mazo, and is present. The fluctuations cross zero only a few times in the
Onsagef(19], assuming free boundaries in two of the threeentire frequency range. Nevertheless, the overall agreement
spatial dimensions, and periodic boundary condition in thds surprisingly good. To comment on the possibility of miss-
third. The same expression was reached by Safarov and Vaisig levels, we stress that two methods were applied to ensure
siliev [20] assuming, as far as we understand, free boundeorrect level counting. First, several spectra were measured

1 (1+2&34nV 1 (3k*—3k%+2)7S
N(f)%—3¥f3 1 ) f2

B 3 of 4(k’-1)
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between the measured staircase function and the Weyl law. 2-0_' - - - 8 GOE d W
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[2] . /- ’,,—’
in the entire frequency range for different transducer posi- < r -
tions, and, second, a temperature perturbation was applied at 1~°_‘ et 1
the high frequencies, where the level density is higher, to 05k RN
split any accidental degeneracies or near degeneracies. We | B
believe that no single level was missed. We note that Ref. 0.0 : : : :
0 10 20 30 40 50

[10] presents a similar comparison for an experiment with a
block of aluminum, but the agreement is poor.

The Weyl curve, and hence the fluctuations, depends on FIG. 3. The nearest neighbor spacing distributiah and the
the elastic constants used. In Fig. 2, we have used the valugg(L) (b) calculated for the 2338 measured resonances of the rect-
given above. Fitting the Weyl curve to the measured staircasangular fused quartz block. The curves labeled “2 GOE” and “8
gives smaller fluctuations, but unrealistic results for the elasGOE” correspond to a superposition of two and eight independent
tic constants. The value for Poisson’s ratio comes out negasOE spectra, respectively.
tive which is unthinkable for fused quartz at room tempera-
ture. We also tried to include a linear term in the fit, but this
qnly makes Poisson’s ratio more negative._lncl_uding both Ehigh degree of symmetry.
linear term and a constant gives=0.31 which is equally

. T At L>20 the experimentalA;(L) lies systematically
unthinkable. We conclude that the unknown coefficients of, )\« 1ha 8.GOE curve. As we shall see in the following, the

any terms of order less than 2 depend on the two el""S‘t'ﬁlock does allow the existence of bouncing-ball-like modes,
constants, and therefore cannot be treated as free parametgSy ~re not influenced by mode conversion. Although such
Were all terms of the Weyl law exactly known, one should Nyesonances are too few in number to make a difference for

pr|nc_|p_le be a'?"? to determine the elastic constants with 93he short range fluctuation statistics, it is very likely that they
precision by fitting the Weyl law to the experimental stair- do influence the long range statistics. Indeed, the contribu-

case. tion to the spectral rigidity of a family of neutral periodic
orbits in the stadium billiard was investigated in REZ7],
and Fig. 7 of that paper shows that the correction to the
A5(L) is less than 0.08 fdr <20, then grows to about 0.4 at
We now study the spectral fluctuation statistics. In Fig. 3L=50. A correction of similar size for our system would
we present the spacing distribution and thg(L), calcu-  explain the observed deviation.
lated for the 2338 measured resonances of the fused quartz In the light of these findings, it is reasonable to comment
block. The eigenfrequency spectrum is unfolded with a poly-on the results presented in RgL0] on spectral statistics of
nomial of degree three, fitted to the measured staircase. Uscoustic resonances in aluminum blocks. There it was dem-
ing instead the Weyl curve of Fig. 2 for the unfolding makesonstrated that for the rectangular block the statistics were
no visible change to the results shown in Fig. 3. It is clearPoissonian. It was mentioned that this could be a result of the
that the data follow the “8-GOE{Gaussian orthogonal en- high degree of symmetry, i.e., so many independent spectra
semble curve for the spacing distribution and for thg(L) contribute that their individual properties would not be seen
up toL=20. The 8-GOE curve corresponds to a superposibecause their total fluctuations are indistinguishable from
tion of eight independent spectra, each with fluctuation propPoissonian when the study includes only a few hundred lev-
erties of the GOE. This is to be expected, since the rectarels. We can now see that this is certainly the explanation, and
gular block has symmetnp,, with eight nondegenerate each of these spectra, if one could be extracted and studied
classes. To our knowledge this is an experimental result thain its own, must display GOE statistics due to mode conver-
successfully identifies the precise number of irreducible repsion. The study of Ref.10] was then really a study of sym-

resentations directly from the spectral statistics for such a

VI. SPECTRAL FLUCTUATION STATISTICS
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400 T T T T T T T ] not guaranteed to lie in the plane of incidence. We note,
' ' ' R however, that since we are not interested in particular orbits
" ] or in the rate at which new bounce angles are produced, the
300F 100k 1 actual conversion probability used has no influence on the
’ ] results presented here, as long as it remains nonzero. We
have therefore used a constant transition probability of 0.5,
independent of the incidence angle. This choice has the ad-
ditional advantage of speeding up the calculations, because
the production of new angles is slow when the transition
probabilities are small. Above the critical angle, given by

200F 10k 1]

1 ) L 1

100¢ 0.001 0010 0100 1000 1 sin(6,)=1/k, an incoming transverse wave cannot mode con-

vert, and the transition probability in our calculation is set to
zero.

For our fused quartz blocks=~1.57, and the system is

0.90 1.00 1.10 1.20 130 1.40 150 1.60 certainly not classically chaotic. Even so, the spectral fluc-
© tuations are well described by the GOE, in general agreement

FIG. 4. Maximum number of bounce angles accessible to thdVith the numerical work in Ref.15], where it is found that
particle as a function ok in a simulation of the classical three- Mode conversion enhances chaoticity. Interestingly, it is
dimensional rectangular billiard with ray splitting. Inset: Same found in Ref.[26] for the square billiard that the exponential
quantity shown as function ok—1 in a log,—logy, plot along  proliferation of orbits, which is expected far< 2, persists
with a straight line fitted by eye. at k~/2, signifying the presence of topological chaos.

Maximum number of bounce angles

metry breaking, going from many symmetries to no symme-
tries. We also note that our system shares the property of
GOE-type fluctuation statistics despite nonergodic classical We may think of mode conversion as a symmetry-
dynamics with the class of pseudointegrable systems, sebreaking mechanism that acts to mix transverse and longitu-
e.g., Ref[28]. We expect this to hold as a general rule for dinal wave motion. These obey different dispersion relations,
the entire class of regular billiards with mode conversion. and their wavelengths change by different amounts in re-

Although the spectral fluctuation properties indicate chasponse to a change of temperature. In our experiments, this
otic behavior, it is understood that the rectangular billiard istranslates into shifts in eigenfrequency, which we can mea-
not classically chaotic, even in the presence of ray splittingsure. That effect can be used to investigate to which degree a
In Ref.[26] it is found for the square billiard that only three particular mode behaves as a transverse or a longitudinal
momentum directions come into play i=\2~1.41, and mode. Differentiating the dispersion relations with respect to
even fork</2 only a finite number of momentum direc- the temperature, we see that
tions are produced.

Itis only in the limit k— 1" that more than a finite num- dfe [, 1da 4T~ 1 dCtd_l_ 3
ber of momentum directions can be reached. In a numerical f e dt)t T dt o ©
calculation of ray dynamics with ray splitting in our three-
dimensional rectangular billiard, we find that a similar pic- whereT is temperature and is the thermal expansion coef-
ture emerges. We count the number of different bouncdicient. For fused quartzg can be ignored. Similarly, for
angles that are produced after a single launch and find thiengitudinal waves
maximum of this number when launching rays in axaD
grid of angle space. In Fig. 4 we plot this maximum number df, 1 dg ( 1 dc k’—1 dv

= c dT 2x(1—»)dT

VII. MODE MIXING AND SPECIAL STATES

of bounces as a function af. It is clear from this plot that f, ¢ dT

for k>/2 maximally 9 different bounce angles can be pro-

duced from a single initial condition. In principle, the curve and we note the additional term, proportional de/dT,

has an infinite number of such transition points, always recompared to Eq(3).

stricting the number of accessible bounce angles by 6 at each It was described in Sec. IV that we measured the 600—885

transition ask increases, and with the last transition takingkHz section of the transmission spectrum at 35°C and at

place atx= 2. The exact values of where these transi- 40 °C. This section contains 1512 resonance peaks. In Fig. 5

tions take place are unknown to us, except for the one at we show the resulting shift in eigenfrequency, normalized to

=./2 mentioned above. Numerically, we find that the firstthe frequency as suggested in E(®.and (4). Since in this

four transitions take place at=1.413, 1.224, 1.154, and paperdf/f serves merely as a label, for convenience we

1.119. We find that the curve can be estimated as 4.57(leave out a factor of 10° whenever we give numbers for

—1)" %9 see the inset to Fig. 4. df/f. The data points fall between a lower limit of about
The numerical procedure used in the calculations is as i0.36 and an upper limit of about 0.55, with a densely popu-

Ref. [15]. To generalize the numerical calculations in Ref.lated region closer to the lower limit.

[15] to three dimensions, one must keep track of the polar- We now study the distribution oflf/f, see Fig. 6. To

ization of the transverse wave, since in three dimensions it ifterpret the result, let us first consider what we would find if

) daT, (4
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FIG. 5. Normalized eigenfrequency shift as a function of fre-
quency for a temperature increase of 5 °C from 35°C to 40°C.
Each “+” represents an eigenfrequency. For the eight data points f=739.5kHz
marked with additional symbols/{,[1, ¢ ) we also measured the :
corresponding standing wave pattern, see Fig. 7.

mode conversion was not present. In that case, we would
expect two é-like peaks, one adf./f; coming from the
transverse modes, and oneddt/f; coming from the longi-

tudinal modes. What we observe is that theskke peaks £=599.3 kHz
vanish as the symmetry is destroyed by mode conversion, ET
producing instead a large peak of mixed modes. Very few i i -
data points remain where thelike peaks would have been.

These few points are special resonances in the sense that the
are protected from mode conversion and therefore do not§
participate in the mixing. In the following section we take a §
closer look at some of these special resonances. From Ref.
[5] we have the estimatesf,/f,=0.37 anddv/dT=3.696 FIG. 7. Gray-scale plots of eight measured standing wave pat-
X10 °°C™ 1. Inserting these values into E@¢4), we get terns. The gray scale is chosen logarithmic because this enhances
df,/f;=0.53. We have not been able to find values forcontrast. The plots are ordered according to increasing value of the
dc,/dT and dw/dT for fused quartz in the literature, and normalized frequency shiftdf/f, and carry the same labels
therefore cannot directly check these numbers. _A,D, $) as in Fig. 5. Note that going from top left plot to lower
It is of interest to compare Fig. 6 to Fig. 5 in RéE], _rlght plot_, or_1e moves from transversé ], through mixed (J),
where the distribution ofif/f for the rectangular plate is M longitudinal (¢), modes.
presented, and we have included that result in the inset tghout 20% of the modes. For the block there are no such
Fig. 6. For the rectangular plate it was found that small bUTpeaks, and the corresponding number is about 1%. We thus
significant peaks remained in the distribution, making upfind that the mixing brought about by mode conversion is
much stronger in the three-dimensional system than in the

40F - Vived - - 3 two-dimensional system. We are at present unaware of a gen-
: 30 Wized ] eral argument that can explain this remarkable difference.
g 25¢ 17 Except for the special states, the symmetry-breaking sce-
SoF 20} 13 nario closely resembles the results obtained in R&f8,30]
= [ 15-Transm 1] in a random matrix model for symmetry bre:_:lking. There, a
E 2ob 1o} 13 so-called asymmetry number is defined, which measures to
Tk st Longitudinal § 4 what extent an eigenvector belongs to one or the other of
| Transverse o o ook two, orlgmally uncoupled, subspaces. Here, the normalized
10F at/t 3 frequency shift plays the role of the asymmetry number.
: Longitudinal ] Moreover, it is a property of the above-mentioned model that
o : . o 3 the mean asymmetry number is conserved as the symmetry is

0.30 035 0.40 0.45 0.50 0.55 broken, and eqL_JaIs_, Fhe weighted average of the asymmetry
dt/t number for the individual subspaces when the symmetry is
good. Denoting by, and p, the density of states for trans-

FIG. 6. Distribution of normalized frequency shift correspond- verse and longitudinal modes, respectively, we find
ing to a temperature increase of 5 °C. Arrows indicate where purely,df,/f,+ p,df, /f,=0.402, sincep,/p,= k>=3.88. In com-
transverse and purely longitudinal resonances would contribute tparison, the mean value of the distribution plotted in Fig. 6 is
the distribution. Inset: Corresponding result in two dimensions, i.e.0.399. The nice agreement indicates that our interpretation of
for the rectangular plate. Fig. 6 is correct.
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1.0 T T 2.0 T ' again ordered since they belong to the special longitudinal
Bost A Zast b ] resonances.
5 5 Two of the measured standing wave patterns stand out as
s 0° s 7 clean bouncing-ball modes, namely, the ones labeléd ™
= 0.4 = 0.8} and “ ¢ 2.” In this case, we can compare the wave numbers
£ o2k g sl to the dispersion relations to check if these are really trans-
& & verse and longitudinal, respectively. In Fig. 8 we compare
00—t 00 : : : the wave numbers coming from the dispersion relations to
0 1 2 3 4 5 0 1 2 3 4

k [t/mm)] k [1/mm)] the experiment, using fast Fourier transfo(RFT). To cal-
culate the wave numbers, we insert the resonance frequen-
FIG. 8. Average FFT of “diagonal” sections of the standing cies, given in Fig. 7, into the relevant dispersion relation. For
wave pattern labeled A1” (a), and of vertical sections of the longitudinal wave motion at 715.6 kHz, we fitkd=27f/c,
placed at twice the wave number of transverse and longitudinghe gpsolute value of the amplitude, the basic length scale is
wave motion, respectively. The shorter dashed lines indicate twic?]ahc the wavelength, corresponding to twice the wave num-
that value. ber, i.e., 1.53 mm®. Similarly, for transverse wave motion
at 652.9 kHz, we expect 2.19 mrh In both cases, Fig. 8
VIIl. STANDING WAVE PATTERNS shows that there is a large peak at the expected wave number.
Although most modes are mixed, we have now seen directly

. tRat bouncing-ball-like modes are present, and that these are
on one face of the rectangular block. The experimental tech(-)f either transverse or longitudinal character.

nigue used is presented in RE22], which was designed for

measurements on plates, but works well for any flat surface.
The method is to sweep the resonance peak in question IX. DISCUSSION AND CONCLUSION

for every point in a predefined grid on the surface. Roughly,

t th it for t lifeti " order 1 In Ref. [15], it is conjectured that one can expect GOE-
one must then wait for two resonance filetimes in order 0type fluctuations for a much wider range of systems when
obtain the vibration amplitude in one point, and the total

; ) “‘mode conversion is present. Along with the results for the
measurement time is about 1 day for a scan of resolutiof iangular platgs], the present study shows that an entire
0.5x0.5 mm. This should not be considered a high-ci5ss of systems, the regular ray-splitting billiards, or rather,
resolution scan, but it is good enough that we can interprefeqgylar billiards with mode conversion, that were not consid-
the measured standing wave patterns. ered before, also possess chaotic spectral fluctuations. It is
Based on the results presented in the preceding section,gur impression that the wave chaos in these classic elastody-
number of resonance peaks were selected for such a meaamical systems has not previously been recognized and
surement of the standing wave pattern. The purpose is tmuch theoretical work is needed to fully understand such
verify directly our finding in the preceding section, in par- systems. Experimental work on “statistical elastodynamics,”
ticular that pure modes exist, although they are rare. We wards presented here and in R€f5,31], should serve to bring
to emphasize that the displacement field is a vector field inhis to the attention of theoretical physicists.
all three spatial dimensions. In our experiments the vibration We do not know of any numerical method that can reli-
is measured using a piezoelectric component with which webly calculate several thousand eigenfrequencies for any of
essentially measure an amplitude and a phase. For flexurtie two regular systems studied so far. It would therefore be
modes of thin plates, we are confident that this amplitude iglifficult to calculate significant fluctuation statistics, and
proportional to the actual vibration amplitude of the plate,hence reveal the apparent wave chaos, by numerical means.
see Ref[22]. For resonances of the fused quartz block, theNevertheless, it is possible to calculate a few eigenfunctions
measured amplitude is some unknown function of the fullat sufficiently high level number, which could answer inter-
displacement field. Nevertheless, it is possible to extracksting questions relating to the chaoticity of the standing
valuable information from the measured standing wave patwaves. One could study the distribution and spatial correla-
terns. In Fig. 7 we show gray-scale plots of eight measuredion of intensity for the longitudinal part and the transverse
standing waves patterns. The first thing to notice about thesgart of an eigenfunction separately. The same information
standing wave patterns is how some modes seem very owould be difficult to reach experimentally.
dered whereas others look more irregular. Ordering the To summarize, we have measured acoustic transmission
modes with respect to increasirif/f reveals a picture spectra and standing wave patterns of a rectangular block of
which is in perfect agreement with what we have found infused quartz. We compare the measured staircase function to
the preceding section of this paper: The modes of smalleshe approximate Weyl formula and find impressive agree-
df/f, labeled “A,” look regular because they belong to the ment. The main focus of our work is to understand the influ-
special transverse resonances that are protected from modace of mode conversion in a regular, three-dimensional sys-
conversion and therefore do not take part in the mixing. Theem. Using numerical simulation we confirm that the
modes of intermediatéf/f, labeled ‘11,” look complicated  classical rectangular three-dimensional ray-splitting billiard
because they are mixtures of transverse and longitudinas not chaotic. Nevertheless, the spectral fluctuation statistics
wave motion. Finally, modes of higtf/f, labeled “0 "are  of the 2338 measured eigenfrequencies follow the statistics
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of eight superposed GOE spectra. The agreement is perfectagirees perfectly with the corresponding dispersion relation.
short range and shows a deviation at longer range which Our work shows that regular systems are interesting when
must be expected for systems with bouncing-ball-like modesmode conversion is present.

We confirm directly that such modes are present in our sys-
tem, first by studying the distribution of normalized fre-
qguency shifts that arise from heating the block by 5 °C. This
shows that almost all resonances are mixed by the mode
conversion, except a few special resonances that remain ei- The authors are grateful to Thiago N. Nogueira for tech-
ther transverse or longitudinal. Second, by looking at standnical assistance and to Predrag Cvitanpvitliels

ing wave patterns for these special resonances, measured 8tndergaard, Gregor Tanner, Thomas Guhr, Andrew D. Jack-
one face of the block. We find that the special modes displagon, and Anders Andersen for valuable suggestions and dis-
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