
PHYSICAL REVIEW E 67, 026213 ~2003!
Chaotic sound waves in a regular billiard
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We present experimental results for the ultrasound transmission spectra and standing wave patterns of a
rectangular block of fused quartz. A comparison is made between our data and an approximation of the
theoretical staircase function for three-dimensional isotropic elasticity. The main emphasis of our study is on
the role of mode conversion in regular ray-splitting billiards. We present the fluctuation statistics and find that
these are described by the Gaussian orthogonal ensemble of random matrix theory, despite the fact that the
system is not classically chaotic, as demonstrated with numerical simulation. Using temperature perturbation,
we find that the vast majority of the resonances are mixtures of transverse and longitudinal wave motion, yet
a small number of special resonances remain pure. We further illuminate this by presenting standing wave
patterns measured on one face of the block.
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I. INTRODUCTION

Can you calculate the eigenfrequencies of a freely vib
ing rectangular block of isotropic and homogeneous ma
rial? Confronted with this question, many physicists wrong
believe that the answer is positive. In fact, not even the ex
average resonance density~Weyl formula! is known, much
less the actual eigenfrequencies or the eigenfunctions.
newed interest and insight in such classic problems of e
todynamics is now arising from the application of metho
used in the field of quantum chaos.

It has been established@1# that the fluctuation propertie
of spectra from quantum billiards and from the flexing
thin plates are identical. This result was confirmed exp
mentally in Ref. @2#, which also presented the theoretic
Weyl formula and found agreement with the experimen
result. Cavity scattering in elastodynamics has been inve
gated@3#, and an important breakthrough occurred very
cently when periodic orbits were used for the first time
calculate the level density for the elastic disc@4#. The rect-
angular plate was investigated experimentally@5# and an at-
tempt to calculate the level density for this system, us
periodic orbits, is under way@6#.

The conjecture of Ref.@7# states that spectral fluctuation
of quantum chaotic systems obey random matrix the
~RMT!, and Ref.@8# states that also the motion of the ener
levels of quantum chaotic systems, under a perturbation
an external parameter, obeys RMT. Experimental results w
acoustic systems@9–13# strongly suggest the applicability o
these two conjectures to a wider range of systems than q
tum chaotic systems@14#. In that capacity, these experimen
have served not just as analog systems of quantum billia
but more generally, to promote problems of elastodynam
as interesting problems in their own right.

In this paper, we consider the free, resonant vibrations
a rectangular block of fused quartz. We are thus studying
three-dimensional version of the in-plane vibration modes
the rectangular plate, treated in Ref.@5#. For both of these
systems, mode conversion is important: On the boundar
1063-651X/2003/67~2!/026213~7!/$20.00 67 0262
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purely transverse or purely longitudinal incoming wave
converted into two outgoing waves, one of each type,
cording to Snell’s law@24#. Reference@15# found by numeri-
cal simulation of ray splitting in classical billiards that cha
ticity is enhanced. Experimental studies of ray-splitti
billiards have been carried out with modified Sinai micr
wave cavities, comparing results for the spectral fluctuati
and parametric correlators to numerical calculations for
ray-splitting version of the annular billiard@16#, and the tri-
angular step billiard@17#. In Ref. @18# the spectra and wave
functions of such experiments are given a semiclassical
terpretation. These studies have all focused on ray-split
systems that are classically chaotic. Here, we are intere
in systems that are not classically chaotic, even when
splitting is present. The rectangular plate is an example
such a system, and in Ref.@5# it was established experimen
tally that mode conversion gives rise to chaotic spectral fl
tuations for this system. It is precisely this issue we now s
to clarify for the rectangular block.

We first present a comparison of the measured stairc
function to an approximation including the two leadin
terms, first calculated by Dupuis, Mazo, and Onsager@19#,
then later by Safarov and Vassiliev@20#. We then present the
fluctuation statistics of the resonances, in terms of the nea
neighbor spacing distribution and theD3(L), and compare to
random matrix results. To investigate the character of
resonances, we measure the distribution of normalized
quency shifts due to a temperature perturbation. This re
can be directly compared to the corresponding result for
rectangular plate@5#, but also serves as a guide for selecti
of resonances for which we measure the standing wave
terns by scanning one face of the block. One of the inter
ing aspects of our results is that we find both mixed sta
and states that are ‘‘bouncing-ball’’-like@21#.

II. EXPERIMENTAL SETUP

We measure ultrasound transmission spectra of a rec
gular block using piezoelectric transducers, see Fig. 1. Th
©2003 The American Physical Society13-1
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are three such transducers, of which one is a transmitter
two are receivers. The temperature of the system is k
constant to within 0.005 °C using a temperature control
such that the eigenfrequencies are not affected by fluc
tions in room temperature. The pressure of the air surrou
ing the block can be controlled and kept at a low value wh
air damping of the block vibration is insignificant. Durin
measurements, the block is resting only on three tiny spi
making the vibrations as close to free as possible. For a m
detailed description of our setup, see Ref.@22#.

The rectangular block is made of fused quartz and
side lengths 14 mm, 25 mm, and 40 mm. The acousticQ
value is between 105 and 106 at a typical frequency of 500
kHz. Previous experiments@11,12# on single-crystal quartz
blocks reportedQ values of around 106 and utilized this high
quality for measuring many eigenfrequencies.

III. DISPERSION RELATIONS AND WEYL LAW

In the bulk of our fused quartz block, transverse and lo
gitudinal waves propagate independently with dispersion
lationsk52p f /ct andk52p f /cl , wherek is the wave num-
ber, f is the frequency, andct and cl are the transverse an
longitudinal wave speeds, respectively. An approximation
the Weyl law, i.e., the number of resonances,

N~ f !'
1

cl
3

~112k3!4pV

3
f 31

1

cl
2

~3k423k212!pS

4~k221!
f 2,

~1!

below frequencyf, was calculated by Dupuis, Mazo, an
Onsager@19#, assuming free boundaries in two of the thr
spatial dimensions, and periodic boundary condition in
third. The same expression was reached by Safarov and
siliev @20# assuming, as far as we understand, free bou

FIG. 1. Measured spectra at two different temperatures of
rectangular fused quartz block, 35 °C~a! and 40 °C~b!.
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aries in all three spatial dimensions. Here,V is the volume of
the system andS is the surface area. Reference@23# gives the
valuesct53750 m/s,cl55894 m/s, and Poisson’s ration
50.16 for fused quartz. The ratio

k5
cl

ct
5A2~12n!

122n
~2!

depends only onn and equals 1.57 with the values give
above.

The resonances are, in general, mixtures of longitud
and transverse waves that propagate independently insid
block but couple upon reflection at a boundary, where mo
conversion takes place, see, e.g., Ref.@24# for details.

IV. ULTRASOUND TRANSMISSION SPECTRUM

An HP 3589A spectrum-network analyzer is used to m
sure the ultrasound transmission spectrum in the freque
range between 0 kHz and 885 kHz. The entire spectrum
measured three times with different locations of the block
the transducers. Using this method, resonance peaks tha
hardly detectable in one spectrum are easily seen in the
other spectra. These measurements were carried out at a
perature of 35 °C. A section of the spectrum, from 600 k
to 885 kHz, was then remeasured at a temperature of 40
Two different positions of the block on the transducers w
used to avoid missing levels, as explained above. Gener
no particular positions are selected, except that they mus
different and we also try to avoid positions that are direc
related to the symmetries of the block. A section of the tra
mission spectrum is plotted in Fig. 1 for the two differe
values of the temperature.

Notice that the temperature increase makes the reson
peaks shift upward in frequency. This comes about beca
the thermal expansion is negligible for fused quartz co
pared to thedn/dT anddct /dT, that are both positive, se
Eqs.~3! and ~4!.

All resonance peaks are fitted with a so-called sk
Lorentzian@25# using interactive software developed in th
programming languageIDL. The fit parameters include th
eigenfrequency and the width.

V. STAIRCASE FUNCTION

We find 2338 resonances in the frequency range from
kHz to 885 kHz. This number must be compared to the W
law, given in Eq.~1!, which gives 2333. In Fig. 2 we show
the measured staircase function along with the Weyl law
~1!. The agreement is striking, considering that Eq.~1! is an
approximation that includes only the two leading term
Looking at the difference between the measured stairc
and the approximate Weyl curve~see inset to Fig. 2!, which
we call the fluctuations, it is clear that some systematic eff
is present. The fluctuations cross zero only a few times in
entire frequency range. Nevertheless, the overall agreem
is surprisingly good. To comment on the possibility of mis
ing levels, we stress that two methods were applied to en
correct level counting. First, several spectra were measu

e
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CHAOTIC SOUND WAVES IN A REGULAR BILLIARD PHYSICAL REVIEW E67, 026213 ~2003!
in the entire frequency range for different transducer po
tions, and, second, a temperature perturbation was applie
the high frequencies, where the level density is higher
split any accidental degeneracies or near degeneracies
believe that no single level was missed. We note that R
@10# presents a similar comparison for an experiment wit
block of aluminum, but the agreement is poor.

The Weyl curve, and hence the fluctuations, depends
the elastic constants used. In Fig. 2, we have used the va
given above. Fitting the Weyl curve to the measured stairc
gives smaller fluctuations, but unrealistic results for the e
tic constants. The value for Poisson’s ratio comes out ne
tive which is unthinkable for fused quartz at room tempe
ture. We also tried to include a linear term in the fit, but th
only makes Poisson’s ratio more negative. Including bot
linear term and a constant givesn50.31 which is equally
unthinkable. We conclude that the unknown coefficients
any terms of order less than 2 depend on the two ela
constants, and therefore cannot be treated as free param
Were all terms of the Weyl law exactly known, one should
principle be able to determine the elastic constants with g
precision by fitting the Weyl law to the experimental sta
case.

VI. SPECTRAL FLUCTUATION STATISTICS

We now study the spectral fluctuation statistics. In Fig
we present the spacing distribution and theD3(L), calcu-
lated for the 2338 measured resonances of the fused q
block. The eigenfrequency spectrum is unfolded with a po
nomial of degree three, fitted to the measured staircase.
ing instead the Weyl curve of Fig. 2 for the unfolding mak
no visible change to the results shown in Fig. 3. It is cle
that the data follow the ‘‘8-GOE’’~Gaussian orthogonal en
semble! curve for the spacing distribution and for theD3(L)
up to L520. The 8-GOE curve corresponds to a superpo
tion of eight independent spectra, each with fluctuation pr
erties of the GOE. This is to be expected, since the rec
gular block has symmetryD2h with eight nondegenerat
classes. To our knowledge this is an experimental result
successfully identifies the precise number of irreducible r

FIG. 2. The measured staircase function~solid step curve! com-
pared to the Weyl law, Eq.~1! ~dashed curve!. Inset: The difference
between the measured staircase function and the Weyl law.
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resentations directly from the spectral statistics for suc
high degree of symmetry.

At L.20 the experimentalD3(L) lies systematically
above the 8-GOE curve. As we shall see in the following,
block does allow the existence of bouncing-ball-like mod
that are not influenced by mode conversion. Although su
resonances are too few in number to make a difference
the short range fluctuation statistics, it is very likely that th
do influence the long range statistics. Indeed, the contr
tion to the spectral rigidity of a family of neutral periodi
orbits in the stadium billiard was investigated in Ref.@27#,
and Fig. 7 of that paper shows that the correction to
D3(L) is less than 0.08 forL,20, then grows to about 0.4 a
L550. A correction of similar size for our system wou
explain the observed deviation.

In the light of these findings, it is reasonable to comme
on the results presented in Ref.@10# on spectral statistics o
acoustic resonances in aluminum blocks. There it was d
onstrated that for the rectangular block the statistics w
Poissonian. It was mentioned that this could be a result of
high degree of symmetry, i.e., so many independent spe
contribute that their individual properties would not be se
because their total fluctuations are indistinguishable fr
Poissonian when the study includes only a few hundred
els. We can now see that this is certainly the explanation,
each of these spectra, if one could be extracted and stu
on its own, must display GOE statistics due to mode conv
sion. The study of Ref.@10# was then really a study of sym

FIG. 3. The nearest neighbor spacing distribution~a! and the
D3(L) ~b! calculated for the 2338 measured resonances of the r
angular fused quartz block. The curves labeled ‘‘2 GOE’’ and
GOE’’ correspond to a superposition of two and eight independ
GOE spectra, respectively.
3-3
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SCHAADT, TUFAILE, AND ELLEGAARD PHYSICAL REVIEW E 67, 026213 ~2003!
metry breaking, going from many symmetries to no symm
tries. We also note that our system shares the propert
GOE-type fluctuation statistics despite nonergodic class
dynamics with the class of pseudointegrable systems,
e.g., Ref.@28#. We expect this to hold as a general rule f
the entire class of regular billiards with mode conversion

Although the spectral fluctuation properties indicate c
otic behavior, it is understood that the rectangular billiard
not classically chaotic, even in the presence of ray splitti
In Ref. @26# it is found for the square billiard that only thre
momentum directions come into play ifk>A2'1.41, and
even fork,A2 only a finite number of momentum direc
tions are produced.

It is only in the limit k→11 that more than a finite num
ber of momentum directions can be reached. In a numer
calculation of ray dynamics with ray splitting in our thre
dimensional rectangular billiard, we find that a similar p
ture emerges. We count the number of different bou
angles that are produced after a single launch and find
maximum of this number when launching rays in a 60360
grid of angle space. In Fig. 4 we plot this maximum numb
of bounces as a function ofk. It is clear from this plot that
for k.A2 maximally 9 different bounce angles can be p
duced from a single initial condition. In principle, the curv
has an infinite number of such transition points, always
stricting the number of accessible bounce angles by 6 at e
transition ask increases, and with the last transition taki
place atk5A2. The exact values ofk where these transi
tions take place are unknown to us, except for the one ak
5A2 mentioned above. Numerically, we find that the fi
four transitions take place atk51.413, 1.224, 1.154, an
1.119. We find that the curve can be estimated as 4.5k
21)20.9, see the inset to Fig. 4.

The numerical procedure used in the calculations is a
Ref. @15#. To generalize the numerical calculations in R
@15# to three dimensions, one must keep track of the po
ization of the transverse wave, since in three dimensions

FIG. 4. Maximum number of bounce angles accessible to
particle as a function ofk in a simulation of the classical three
dimensional rectangular billiard with ray splitting. Inset: Sam
quantity shown as function ofk21 in a log102 log10 plot along
with a straight line fitted by eye.
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not guaranteed to lie in the plane of incidence. We no
however, that since we are not interested in particular or
or in the rate at which new bounce angles are produced,
actual conversion probability used has no influence on
results presented here, as long as it remains nonzero.
have therefore used a constant transition probability of 0
independent of the incidence angle. This choice has the
ditional advantage of speeding up the calculations, beca
the production of new angles is slow when the transit
probabilities are small. Above the critical angle, given
sin(uc)51/k, an incoming transverse wave cannot mode c
vert, and the transition probability in our calculation is set
zero.

For our fused quartz block,k'1.57, and the system i
certainly not classically chaotic. Even so, the spectral fl
tuations are well described by the GOE, in general agreem
with the numerical work in Ref.@15#, where it is found that
mode conversion enhances chaoticity. Interestingly, it
found in Ref.@26# for the square billiard that the exponenti
proliferation of orbits, which is expected fork,A2, persists
at k'A2, signifying the presence of topological chaos.

VII. MODE MIXING AND SPECIAL STATES

We may think of mode conversion as a symmet
breaking mechanism that acts to mix transverse and long
dinal wave motion. These obey different dispersion relatio
and their wavelengths change by different amounts in
sponse to a change of temperature. In our experiments,
translates into shifts in eigenfrequency, which we can m
sure. That effect can be used to investigate to which degr
particular mode behaves as a transverse or a longitud
mode. Differentiating the dispersion relations with respec
the temperature, we see that

d ft

f t
5S 2s1

1

ct

dct

dTDdT'
1

ct

dct

dT
dT, ~3!

whereT is temperature ands is the thermal expansion coe
ficient. For fused quartz,s can be ignored. Similarly, for
longitudinal waves

d fl

f l
'

1

cl

dcl

dT
dT5S 1

ct

dct

dT
1

k221

2k~12n!

dn

dTDdT, ~4!

and we note the additional term, proportional todn/dT,
compared to Eq.~3!.

It was described in Sec. IV that we measured the 600–
kHz section of the transmission spectrum at 35 °C and
40 °C. This section contains 1512 resonance peaks. In F
we show the resulting shift in eigenfrequency, normalized
the frequency as suggested in Eqs.~3! and ~4!. Since in this
paper d f / f serves merely as a label, for convenience
leave out a factor of 1023 whenever we give numbers fo
d f / f . The data points fall between a lower limit of abo
0.36 and an upper limit of about 0.55, with a densely pop
lated region closer to the lower limit.

We now study the distribution ofd f / f , see Fig. 6. To
interpret the result, let us first consider what we would find

e
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CHAOTIC SOUND WAVES IN A REGULAR BILLIARD PHYSICAL REVIEW E67, 026213 ~2003!
mode conversion was not present. In that case, we wo
expect twod-like peaks, one atd ft / f t coming from the
transverse modes, and one atd fl / f l coming from the longi-
tudinal modes. What we observe is that thesed-like peaks
vanish as the symmetry is destroyed by mode convers
producing instead a large peak of mixed modes. Very f
data points remain where thed-like peaks would have been
These few points are special resonances in the sense tha
are protected from mode conversion and therefore do
participate in the mixing. In the following section we take
closer look at some of these special resonances. From
@5# we have the estimatesd ft / f t50.37 anddn/dT53.696
31025 °C21. Inserting these values into Eq.~4!, we get
d fl / f l50.53. We have not been able to find values
dct /dT and dn/dT for fused quartz in the literature, an
therefore cannot directly check these numbers.

It is of interest to compare Fig. 6 to Fig. 5 in Ref.@5#,
where the distribution ofd f / f for the rectangular plate is
presented, and we have included that result in the inse
Fig. 6. For the rectangular plate it was found that small
significant peaks remained in the distribution, making

FIG. 5. Normalized eigenfrequency shift as a function of f
quency for a temperature increase of 5 °C from 35 °C to 40
Each ‘‘1’’ represents an eigenfrequency. For the eight data po
marked with additional symbols (n,h,L) we also measured th
corresponding standing wave pattern, see Fig. 7.

FIG. 6. Distribution of normalized frequency shift correspon
ing to a temperature increase of 5 °C. Arrows indicate where pu
transverse and purely longitudinal resonances would contribut
the distribution. Inset: Corresponding result in two dimensions,
for the rectangular plate.
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about 20% of the modes. For the block there are no s
peaks, and the corresponding number is about 1%. We
find that the mixing brought about by mode conversion
much stronger in the three-dimensional system than in
two-dimensional system. We are at present unaware of a
eral argument that can explain this remarkable difference

Except for the special states, the symmetry-breaking s
nario closely resembles the results obtained in Refs.@29,30#
in a random matrix model for symmetry breaking. There
so-called asymmetry number is defined, which measure
what extent an eigenvector belongs to one or the othe
two, originally uncoupled, subspaces. Here, the normali
frequency shift plays the role of the asymmetry numb
Moreover, it is a property of the above-mentioned model t
the mean asymmetry number is conserved as the symme
broken, and equals the weighted average of the asymm
number for the individual subspaces when the symmetr
good. Denoting byr t andr l the density of states for trans
verse and longitudinal modes, respectively, we fi
r td f t / f t1r ld f l / f l50.402, sincer t /r l5k353.88. In com-
parison, the mean value of the distribution plotted in Fig. 6
0.399. The nice agreement indicates that our interpretatio
Fig. 6 is correct.

-
.
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FIG. 7. Gray-scale plots of eight measured standing wave
terns. The gray scale is chosen logarithmic because this enha
contrast. The plots are ordered according to increasing value o
normalized frequency shift,d f / f , and carry the same label
(n,h,L) as in Fig. 5. Note that going from top left plot to lowe
right plot, one moves from transverse (n), through mixed (h),
into longitudinal (L), modes.
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VIII. STANDING WAVE PATTERNS

Using a scanner we can measure standing wave pat
on one face of the rectangular block. The experimental te
nique used is presented in Ref.@22#, which was designed fo
measurements on plates, but works well for any flat surfa

The method is to sweep the resonance peak in ques
for every point in a predefined grid on the surface. Rough
one must then wait for two resonance lifetimes in order
obtain the vibration amplitude in one point, and the to
measurement time is about 1 day for a scan of resolu
0.530.5 mm. This should not be considered a hig
resolution scan, but it is good enough that we can interp
the measured standing wave patterns.

Based on the results presented in the preceding sectio
number of resonance peaks were selected for such a
surement of the standing wave pattern. The purpose i
verify directly our finding in the preceding section, in pa
ticular that pure modes exist, although they are rare. We w
to emphasize that the displacement field is a vector field
all three spatial dimensions. In our experiments the vibrat
is measured using a piezoelectric component with which
essentially measure an amplitude and a phase. For flex
modes of thin plates, we are confident that this amplitud
proportional to the actual vibration amplitude of the pla
see Ref.@22#. For resonances of the fused quartz block,
measured amplitude is some unknown function of the
displacement field. Nevertheless, it is possible to extr
valuable information from the measured standing wave p
terns. In Fig. 7 we show gray-scale plots of eight measu
standing waves patterns. The first thing to notice about th
standing wave patterns is how some modes seem very
dered whereas others look more irregular. Ordering
modes with respect to increasingd f / f reveals a picture
which is in perfect agreement with what we have found
the preceding section of this paper: The modes of sma
d f / f , labeled ‘‘n, ’’ look regular because they belong to th
special transverse resonances that are protected from m
conversion and therefore do not take part in the mixing. T
modes of intermediated f / f , labeled ‘‘h, ’’ look complicated
because they are mixtures of transverse and longitud
wave motion. Finally, modes of highd f / f , labeled ‘‘L ’’ are

FIG. 8. Average FFT of ‘‘diagonal’’ sections of the standin
wave pattern labeled ‘‘n1’’ ~a!, and of vertical sections of the
standing wave pattern labeled ‘‘L2’’ ~b!. A long dashed line is
placed at twice the wave number of transverse and longitud
wave motion, respectively. The shorter dashed lines indicate tw
that value.
02621
rns
h-

e.
on
,

o
l
n

-
et

, a
ea-
to

nt
in
n
e
ral
is
,
e
ll
ct
t-
d
se
or-
e

st

de
e

al

again ordered since they belong to the special longitud
resonances.

Two of the measured standing wave patterns stand ou
clean bouncing-ball modes, namely, the ones labeled ‘‘n1’’
and ‘‘L2.’’ In this case, we can compare the wave numb
to the dispersion relations to check if these are really tra
verse and longitudinal, respectively. In Fig. 8 we compa
the wave numbers coming from the dispersion relations
the experiment, using fast Fourier transform~FFT!. To cal-
culate the wave numbers, we insert the resonance freq
cies, given in Fig. 7, into the relevant dispersion relation. F
longitudinal wave motion at 715.6 kHz, we findk52p f /cl
50.76 mm21. Since the standing wave patterns repres
the absolute value of the amplitude, the basic length sca
half the wavelength, corresponding to twice the wave nu
ber, i.e., 1.53 mm21. Similarly, for transverse wave motio
at 652.9 kHz, we expect 2.19 mm21. In both cases, Fig. 8
shows that there is a large peak at the expected wave num
Although most modes are mixed, we have now seen dire
that bouncing-ball-like modes are present, and that these
of either transverse or longitudinal character.

IX. DISCUSSION AND CONCLUSION

In Ref. @15#, it is conjectured that one can expect GO
type fluctuations for a much wider range of systems wh
mode conversion is present. Along with the results for
rectangular plate@5#, the present study shows that an ent
class of systems, the regular ray-splitting billiards, or rath
regular billiards with mode conversion, that were not cons
ered before, also possess chaotic spectral fluctuations.
our impression that the wave chaos in these classic elast
namical systems has not previously been recognized
much theoretical work is needed to fully understand su
systems. Experimental work on ‘‘statistical elastodynamic
as presented here and in Refs.@5,31#, should serve to bring
this to the attention of theoretical physicists.

We do not know of any numerical method that can re
ably calculate several thousand eigenfrequencies for an
the two regular systems studied so far. It would therefore
difficult to calculate significant fluctuation statistics, an
hence reveal the apparent wave chaos, by numerical me
Nevertheless, it is possible to calculate a few eigenfuncti
at sufficiently high level number, which could answer inte
esting questions relating to the chaoticity of the stand
waves. One could study the distribution and spatial corre
tion of intensity for the longitudinal part and the transver
part of an eigenfunction separately. The same informat
would be difficult to reach experimentally.

To summarize, we have measured acoustic transmis
spectra and standing wave patterns of a rectangular bloc
fused quartz. We compare the measured staircase functio
the approximate Weyl formula and find impressive agr
ment. The main focus of our work is to understand the infl
ence of mode conversion in a regular, three-dimensional
tem. Using numerical simulation we confirm that th
classical rectangular three-dimensional ray-splitting billia
is not chaotic. Nevertheless, the spectral fluctuation statis
of the 2338 measured eigenfrequencies follow the statis
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of eight superposed GOE spectra. The agreement is perfe
short range and shows a deviation at longer range wh
must be expected for systems with bouncing-ball-like mod
We confirm directly that such modes are present in our s
tem, first by studying the distribution of normalized fr
quency shifts that arise from heating the block by 5 °C. T
shows that almost all resonances are mixed by the m
conversion, except a few special resonances that remai
ther transverse or longitudinal. Second, by looking at sta
ing wave patterns for these special resonances, measure
one face of the block. We find that the special modes disp
a high degree of order and we can directly measure the w
number for a transverse and a longitudinal mode, wh
t

02621
t at
h

s.
s-

s
de
ei-
-
on
y
ve
h

agrees perfectly with the corresponding dispersion relatio
Our work shows that regular systems are interesting w

mode conversion is present.
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